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Gas flows in microchannels and microtubes
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This study analyses compressible gas flows through microchannels or microtubes, and
develops two complete sets of asymptotic solutions. It is a natural extension of the
previous work by Arkilic et al. on compressible flows through microchannels. First, by
comparing the magnitudes of different forces in the compressible gas flow, we obtain
proper estimations for the Reynolds and Mach numbers at the outlets. Second, based
on these estimations, we obtain asymptotic analytical solutions of velocities, pressure
and temperature distributions of compressible gas flow inside the microchannels and
microtubes with a relaxation of the isothermal assumption, which was previously used
in many studies. Numerical simulations of compressible flows through a microchannel
and a microtube are performed by solving the compressible Navier–Stokes equations,
with velocity slip and temperature jump wall boundary conditions. The numerical
simulation results validate the analytical results from this study.

1. Introduction
Microchannels are important components for many micro-electro-mechanical

systems (MEMS), and they are used to transport gas in many MEMS devices.
In the literature, there are many discussions about gas flows in tubes (see for example
Prud’homme, Champman & Brown 1986; van den Berg, ten Seldam & van der Guli
1993; Harley & Huang 1995). It is found that because of the small scale microchannel
flows exhibit many interesting phenomena that were not observed in their large-scale
counterparts. For example, the experimental measurements by Pong, Ho & Liu (1994)
and Arkilic, Schmidt & Breuer (1997) showed that the gas pressure distribution along
a microchannel is not linear, and there is obvious velocity slip on the channel wall.
It is well accepted that for microchannel flows the Navier–Stokes equations are still
applicable if a slip wall boundary condition is used. Several analytical solutions for
the flow field have been presented using the isothermal assumption, for example, the
work by Arkilic, Schmidt & Breuer (2001) and Zohar et al. (2004). More complicated
results have also been obtained numerically using kinetic-based approaches, inclu-
ding the direct simulation Monte Carlo method by Ho & Tai (1998) and Zheng,
Garcia & Alder (2000), the information preservation method by Cai et al. (2000) and
Shen, Fan & Xie (2003), and the gas-kinetic BGK–Burnett method by Xu & Li (2004).

The work in this paper aims to extend Arkilic et al.’s original work to compressible
gas flows in microchannels and microtubes by removing the isothermal assumption.
In many cases, the isothermal assumption is not valid and a correctly predicted
temperature field is required. Large temperature variation may exist in short
microchannel flows. For instance, based on figures 6 and 3(c) in Xu & Li (2004), the
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temperature variation along a channel centreline is found to reach over 20%. The
temperature variation will also build up in long channels. Even when the temperature
variation is not significant, the temperature gradient can be very important for
heat conduction problems, and it may need special attention for maintenance and
system integration in a microsystem environment. The small height of microchannels
or microtubes will usually result in large temperature gradients, which cannot be
predicted using the isothermal assumption. Also, it is difficult to obtain an analytical
expression for the temperature field; an ill-posed energy equation is usually obtained
using the asymptotic approach. Hence, a study of the temperature field inside a
microchannel or a microtube is of practical importance with mathematical significance.
Therefore, some recent research work has investigated the temperature field or the heat
transfer in microchannels or microtubes, for example, Kedzierski (2003), Wang & Li
(2004), Hetstroni et al. (2005) and Qin, Sun & Yin (2007).

2. Problem description and governing equations
Microchannel and microtube flows are very similar, but distinguished by the

geometry where the former is two-dimensional and the latter is axisymmetric. Here
we use microchannel flows as an example to illustrate our analysis, and the same
principles are applicable to microtube flows.

Suppose a microchannel has a height of H and a length of L, and the average gas
properties of the compressible outflow are: pressure po, density ρo, temperature To,
velocity Uo, and number density no, where subscript o denotes an average quantity
at the outlet. The inlet pressure should be larger than the outlet pressure in order to
drive the flow. The temperature is allowed to have small variations, which removes the
isothermal condition used by Arkilic et al. and Zohar et al. The averaged quantities
at the outlet are used to normalize the following governing equations and boundary
conditions.

The Navier–Stokes equations for steady, compressible gas flows can be written as
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where λ, σu, σT , P r, γ are mean free path, momentum accommodation coefficient,
energy accommodation coefficient, Prandtl number, and specific heat ratio, and
subscript w represents wall properties.

3. Order analysis for Reynolds and Mach numbers
Order analysis provides insight into possible simplification of the problem. To do

this, a single control volume of the entire microchannel is taken. If the shear stress
on the surface is approximated as µu/(H/2), then the momentum equation in the
X-direction takes the following form:

(po − pi)H + ρouoH (uo − ui) + Lµ(uo/H + ui/H ) ∼ 0
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(P − 1)ε/Ma2 : γ ε : γ /Re Re ∼ O(ε) Re ∼ O(1) Re ∼ O(1/ε)

Ma ∼ O(ε) (P − 1)/ε : γ ε : γ /ε (P − 1)/ε : γ ε : ε (P − 1)/ε : γ ε : γ ε
Ma ∼ O(1) (P − 1)ε : γ ε : γ /ε (P − 1)ε : γ ε : γ (P − 1)ε : γ ε : γ ε

Ma ∼ O(1/ε) (P − 1)ε3 : γ ε : γ /ε (P − 1)ε3 : γ ε : γ (P − 1)ε3 : γ ε : γ ε

Table 1. Order estimations for different Mach number and Reynolds number combinations.

where subscripts i, o represent averaged quantities at the inlet and outlet, respectively.
The Reynolds number based on the average properties at the channel exit,
Re = ρouoH/µ, is usually small, say less than 300. The flow is then assumed laminar.

It is further assumed that the outlet velocity is much larger than the inlet velocity,
which is reasonable if the pressure ratio of the inlet to the outlet is larger than 1.
Then the following relation is obtained:

O((P − 1)εMa−2) − O(γ ε) − O(γ /Re) ∼ 0, (3.1)

where P = pi/po is the pressure ratio, ε = H/L is the aspect ratio, and Ma = uo/
√

γRTo

is the Mach number based on the average velocity and temperature at the channel exit.
To simplify our analysis, we assume that 1 <P < 10 � 1/ε and 10−1 > ε > 10−5 in
this study.

Mathematically, there are four possibilities among the three terms in (3.1): two
terms are significantly greater than the other term and hence these two terms balance
each other, or all of the three terms share the same order. The four cases are:

(1) The pressure drop term balances with the convection term while the viscous
term is smaller. This leads to (P − 1)εMa−2 ∼ γ ε, γ /Re = o(γ ε), which requires
γMa2 ∼ (P − 1) and 1/Re = o(ε). This is a case with large Reynolds and Mach
numbers. It is not typical for microchannel flows, and it is not considered in this
study.

(2) The pressure drop term balances with the viscous term while the convection
term is small. This condition leads to (P − 1)εMa−2 ∼ γ /Re, γ ε = o(γ /Re). It is easy
to show that γMa2/Re = O((P − 1)ε) and γMa2/(P − 1) = o(1).

(3) The convection term balances with the viscous term, and the pressure drop term
is smaller. Obviously, this is not a pressure-driven case and the velocity will decrease
along the channel. This is another case we will not consider in this study.

(4) All of the three terms are of the same order: (P − 1)εMa−2 ∼ γ ε ∼ γ /Re, which
means that γMa2 ∼ (P − 1) and Re ∼ 1/ε. This is also a high Mach number case, and
is not considered.

Thus, Case 2 is the only category to be studied in this work. Specifically, two
sub-categories are considered, where the Knudsen number is also given using the
relation, Kn =

√
πγ /2(Ma/Re):

Case 2A: Ma ∼ O(ε1/2), Re ∼ O(1), Kn ∼ O(ε1/2);
Case 2B: Ma ∼ O(ε), Re ∼ O(ε), Kn ∼ O(1).
We emphasize that the Mach and Reynolds numbers at the outlet are closely related

as indicated by the X-momentum equation. Hence it is improper to assume their
orders in an arbitrary manner. Table 1 shows the orders of the three terms (pressure
drop, viscous term, convection term) for nine different combinations of Reynolds and
Mach numbers. Clearly, only three of the nine cases satisfy the X-momentum balance
relation: Re ∼ O(ε), Ma ∼ O(ε); Re ∼ O(1/ε), Ma ∼ O(1); Re ∼ O(1/ε), Ma ∼ O(1/ε).
Note that the last case falls into category (iii), which is not pressure driven.
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4. Asymptotic solutions for flows in a microchannel
Following the steps in Arkilic et al.’s original work, we normalize the flow properties

by the averaged values at the channel outlet, the X- and Y -coordinates by the channel
length, L, and height, H , and use a prime to denote the non-dimensional quantities.
We use the following forms for the non-dimensional quantities:

u′ = u1 + εu2 + · · · , v′ = v1 + εv2 + · · · , p′ = p1 + εp2 + · · · ,
ρ ′ = ρ1 + ερ2 + · · · , n′ = n1 + εn2 + · · · .

For the flow field in a microchannel, the temperature has less variation than the
pressure and density. We assume a quasi-isothermal condition T ′ = 1 + εT2 for the
temperature, which allows us to obtain an analytical expression for the temperature
distribution.

The viscosity coefficient, µ, and the heat conductivity coefficient, k, are assumed
to be constant since the temperature variation in microchannels is not large. Putting
together all the assumptions, we can organize the governing equations according to
orders of ε, which results in the following simplified equations:

v1 = 0,
dp1

dy ′ = 0,
εRe

γMa2

dp1

dx ′ =
∂2u1

∂2y
′ ,

∂(p1u1)
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The normalized velocity slip and temperature jump boundary conditions on the wall
are

u′
w = ΘuKn(x ′)
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)
w

, 1 + εT2 − T
′

w = ΘT

2γ

Pr(γ + 1)
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′

)
w

, (4.3)

where Θu = (2 − σu)/σu, ΘT = (2 − σT )/σT . Note that in the velocity boundary
condition, the temperature gradient term is omitted because it is much smaller than
the velocity gradient term for the Reynolds number and the Knudsen number in Case
2A or Case 2B; and for the temperature boundary condition, T ′ = 1 + εT ′

2 is used.
Together with the velocity slip boundary condition, the above equations yield the

following results that are consistent with those obtained by Arkilic et al. previously:

u1(x
′, y ′) = − εRe

8γMa2

(
dp1

dx ′

)
(1 − 4y ′2 + 4ΘuKn(x ′)), (4.4)
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1

2
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1
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(
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3
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]
, (4.5)

p1(x
′) = −6ΘuKno +

√
(6ΘuKno)2 + (1 + 12ΘuKno)x ′ + (P 2 + 12ΘuKnoP )(1 − x ′),

(4.6)

where Kno is the Knudsen number at the channel exit. The derivation of v2(x
′, y ′)

utilizes the continuity equation and the condition p1 = ρ1, obtained by expanding the
state equation p1 + εp2 = (ρ1 + ερ2)(1 + εT2). Hence, the isothermal assumption is
relaxed.

For Case 2A, the three terms in (4.2) have the same order of magnitude; for Case
2B, the leading term in (4.2) is the one on the left-hand side. For both cases (4.2) is
solvable with the temperature jump conditions. The temperature solutions for both
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cases share the same form:

T2(x
′, y ′) = A(x ′)B(y ′) + D(x ′), (4.7)

where
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The velocity slip and the temperature jump along the wall can be explicitly obtained
from (4.4) and (4.7), on y ′ =1/2:
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The non-dimensional and dimensional mass flow rates are

Q′ =
εRe

24γMa2
[P − 1][P + 1 + 12ΘuKno], Q ∼ O(µRe(P + 1 + 12ΘuKno)). (4.8)

5. Asymptotic solutions for flows in a microtube
For the gas flows in a microtube with a circular cross-section, with the Mach and

Reynolds numbers listed in Case 2A and Case 2B, all the processes described in the
previous sections are applicable, and the simplified equations and results are
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and the velocity slip and temperature conditions are, on r ′ = 1/2,
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The corresponding solutions are
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′, r ′) = − εRe
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(5.6)

T2(z
′, r ′) = A(z′)B(r ′) + D(z′), (5.7)
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where
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The velocity slip and the temperature jump along the wall explicitly obtained from
(5.4) and (5.7) are, on r ′ = 1/2,

u1(z
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4γMa2

dp1

dz′
Kno

p(z′)
, T ′
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The non-dimensional and dimensional mass flow rates are

Q′ =
εRe

32γMa2
[P − 1][P + 1 + 16ΘuKno], Q ∼ O(µRe(P + 1 + 16ΘuKno)). (5.8)

Finally we offer some comments to conclude the analytical work:
(i) The isothermal assumption is replaced by a quasi-isothermal condition, T ′ =1+

εT2, which is critical to obtain the temperature solution. It is valid for flows with a
slow speed and small temperature variations, but not applicable to high-speed gas
flow in a channel or tube with electric–magnetic field effects.

(ii) The results obtained are asymptotic solutions to the flow in a channel or tube
with two specific combinations of the Reynolds and Mach numbers. However, other
asymptotic solutions may exist with different combinations of Mach and Reynolds
numbers obeying X-momentum equation as well. There may even exist other solutions
that are only obtainable by numerical simulations.

(iii) The pressure distribution for gaseous flows in a microtube varies nonlinearly
with z′. For non-slip wall boundary conditions with Kn → 0, the pressure distribution
in a channel or a tube follows the same equation: p1(z

′) =
√

z′ + P 2(1 − z′), and the
U -velocity contours are similar with a difference factor of 2.

(iv) In the literature, some researchers suggest the following simplified energy
equation to study the temperature field: ρuCp∂T /∂z = 1

r
(∂/∂r)(kr∂T /∂r)+µ(∂u/∂r)2.

This equation is inappropriate for the pressure-driven gas flow in a microchannel or
a tube with a quasi-isothermal assumption, because it improperly neglects the term
dp/dz which is one order larger than dT/dz = εdT2/dz.

(v) Some researchers use a second-order slip model for the wall boundary conditions,
us = − A1(Kn/ρ)(∂u/∂y) − A2(Kn2/ρ2)(∂2u/∂y2), see Qin et al. (2007). For this
treatment, an extra term with temperature gradient should be included, since it
is not smaller than the second term in the expression.

6. Numerical results
To validate the asymptotic solutions for the compressible flows in a microchannel

or a microtube, we simulate the following two test cases, where the first has large
temperature variations and the second illustrates large temperature gradients even
with very small temperature variations:

Case A: Microchannel flow, L = 20 µm, H (or D) = 1.2 µm, pi =3.0 × 105 Pa;
Case B: Microtube flow, L = 15 µm, H (or D) = 0.53 µm, pi = 2.5 × 105 Pa.
For both cases, po =1.0 × 105 Pa, Tw =300 K, and the accommodation coefficients

σu = σT = 0.85. The working gas is oxygen having a Prandtl number Pr = 0.72 and a
specific heat ratio γ = 1.4.
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Figure 1. Comparison of centreline pressure profiles: (a) microchannel, (b) microtube.
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Figure 2. U -Contours (m s−1) from analytical and numerical simulation: (a) microchannel,
(b) microtube.

Figures 1(a) and 1(b) show the analytical and numerical results for the pressure
profiles along the centreline for the microchannel and microtube respectively.
The analytical and numerical results fit very well, and the nonlinear effects are
obvious.

Figures 2(a) and 2(b) show the U -velocity contours that show clear velocity slip
along the wall. Again, very good agreement between the analytical and numerical
simulation results are obtained. The validity of the analytical results for the pressure
distribution in a microchannel has been tested by many other researchers. Hence
these two simulation results show that our solution of the compressible Navier–
Stokes equation is reliable. Figures 3(a) and 3(b) show the contours for the velocity
component normal to the flow direction. The V -velocity values are zero on the wall
and centreline. The microtube flow has smaller velocities than the microchannel.
Generally, the numerical and the analytical results match very well.

Figures 4(a) and 4(b) show the temperature contours. For the microchannel flow,
the temperature distributions have larger variations than for the microtube flow.
It is clear that the temperature field formula is correct. Two factors account for
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the discrepancies between the numerical and analytical temperature results: (a) the
analytical expression contains a term (dp/dx)2, resulting in a large difference even
with a small difference in p(x ′); (b) numerically, the heating effects at the channel
entrance can be large, but the analytical results do not have any entrance effects.

Figure 5(a) shows the density contours for the microchannel flow. The analytical
results are computed with ρ(x ′, y ′) = p(x ′)/(1 + εT2(x

′, y ′)). If the isothermal assump-
tion were followed, the density field contours would be straight, but this plot clearly
shows that the density contours are not straight when considering the temperature
field. Xu & Li (2004) also has a similar plot of density contours. For the microtube
flows, the density contours are straight and are not included here.

Figure 5(b) shows the analytical velocity slip and the temperature gradients along
the channel and the tube wall: the magnitude of dT/dn is significant. Even for the
microtube case, the gradient is large due to the small dimension. Hence, it is important
to study the temperature field for microflows.

We also perform several simulations to validate the fundamental Reynolds–Mach
number relation, and the mass flow rate relation, for a microchannel. Two series
of simulations are performed where the pressure ratio varies from 1.8 to 3.0, and
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Figure 6. Microchannel: (a) Relations between Ma2/Re and (P − 1)ε at channel outlets.
(b) Dimensional mass flow rate vs. K , where K = Re(P + 1 + 12ΘuKno) for slip flows and
K = Re(P + 1) for non-slip flows.

the channel length varies from 36 µm to 216 µm, while the channel height is fixed
at H = 0.53 µm. Both slip and non-slip wall boundary conditions are used. The
simulation results indicate that they belong to either Case 2A or Case 2B. Figure 6(a)
shows the relation between the pressure ratios, P , the channel dimension ratio, ε,
and the Reynolds/Mach numbers at the channel outlets. Near-linear relations are
obtained as predicted by our analysis in § 3. Each symbol represents one simulation for
a microchannel with a different combination of parameters by varying the channel
length, pressure or wall boundary conditions. Two straight lines are added to aid
the comparison. Figure 6(b) shows the relation between the mass flow rate and
Re(P + 1 + 12ΘuKno) for the slip flow situation or Re(P + 1) for the non-slip flow
situation.
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7. Conclusion
In summary, we have performed an order analysis for the outlet Mach and Reynolds

numbers, and obtained the temperature field using a quasi-isothermal assumption
considering two groups of parameters. The work is based on physical assumptions
and mathematic analysis. It naturally extended Arkilic et al.’s analytical original work
on compressible gas flow in a microchannel. Without the limitation imposed by the iso-
thermal assumption, the results from this study are applicable to microchannel/tubes
with temperature variation. The microchannels or microtubes can be very long or very
short; the only requirement is that the pressure drop term balances with the viscous
term when the convection term is small, or they belong to Case 2 as discussed in § 3.
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